

pyexcel-io - Let you focus on data, instead of file formats

	Author

	C.W.

	Source code

	http://github.com/pyexcel/pyexcel-io.git

	Issues

	http://github.com/pyexcel/pyexcel-io/issues

	License

	New BSD License

	Released

	0.5.11

	Generated

	Dec 05, 2018

Introduction

pyexcel-io provides one application programming interface(API) to read
and write data in different excel formats. It makes information processing
involving excel files a simple task. The data in excel files can be turned into
an ordered dictionary with least code. This library focuses on data processing
using excel files as storage media hence fonts, colors and charts were not and
will not be considered.

It was created due to the lack of uniform programming interface to access data
in different excel formats. A developer needs to use different methods of
different libraries to read the same data in different excel formats, hence
the resulting code is cluttered and unmaintainable. This is a challenge posed
by users who do not know or care about the differences in excel file formats.
Instead of educating the users about the specific excel format a data processing
application supports, the library takes up the challenge and promises to support
all known excel formats.

All great work have done by individual library developers. This library unites
only the data access API. With that said, pyexcel-io also bring something
new on the table: “csvz” and “tsvz” format, new format names
as of 2014. They are invented and supported by pyexcel-io [https://github.com/pyexcel/pyexcel-io].

Installation

You can install pyexcel-io via pip:

$ pip install pyexcel-io

or clone it and install it:

$ git clone https://github.com/pyexcel/pyexcel-io.git
$ cd pyexcel-io
$ python setup.py install

For individual excel file formats, please install them as you wish:

A list of file formats supported by external plugins

	Package name

	Supported file formats

	Dependencies

	Python versions

	pyexcel-io [https://github.com/pyexcel/pyexcel-io]

	csv, csvz 1, tsv,
tsvz 2

	
	2.6, 2.7, 3.3,
3.4, 3.5, 3.6
pypy

	pyexcel-xls [https://github.com/pyexcel/pyexcel-xls]

	xls, xlsx(read only),
xlsm(read only)

	xlrd [https://github.com/python-excel/xlrd],
xlwt [https://github.com/python-excel/xlwt]

	same as above

	pyexcel-xlsx [https://github.com/pyexcel/pyexcel-xlsx]

	xlsx

	openpyxl [https://bitbucket.org/openpyxl/openpyxl]

	same as above

	pyexcel-ods3 [https://github.com/pyexcel/pyexcel-ods3]

	ods

	pyexcel-ezodf [https://github.com/pyexcel/pyexcel-ezodf],
lxml

	2.6, 2.7, 3.3, 3.4
3.5, 3.6

	pyexcel-ods [https://github.com/pyexcel/pyexcel-ods]

	ods

	odfpy [https://github.com/eea/odfpy]

	same as above

Dedicated file reader and writers

	Package name

	Supported file formats

	Dependencies

	Python versions

	pyexcel-xlsxw [https://github.com/pyexcel/pyexcel-xlsxw]

	xlsx(write only)

	XlsxWriter [https://github.com/jmcnamara/XlsxWriter]

	Python 2 and 3

	pyexcel-xlsxr [https://github.com/pyexcel/pyexcel-xlsxr]

	xlsx(read only)

	lxml

	same as above

	pyexcel-odsr [https://github.com/pyexcel/pyexcel-odsr]

	read only for ods, fods

	lxml

	same as above

	pyexcel-htmlr [https://github.com/pyexcel/pyexcel-htmlr]

	html(read only)

	lxml,html5lib

	same as above

In order to manage the list of plugins installed, you need to use pip to add or remove
a plugin. When you use virtualenv, you can have different plugins per virtual
environment. In the situation where you have multiple plugins that does the same thing
in your environment, you need to tell pyexcel which plugin to use per function call.
For example, pyexcel-ods and pyexcel-odsr, and you want to get_array to use pyexcel-odsr.
You need to append get_array(…, library=’pyexcel-odsr’).

Footnotes

	1

	zipped csv file

	2

	zipped tsv file

After that, you can start get and save data in the loaded format. There
are two plugins for the same file format, e.g. pyexcel-ods3 and pyexcel-ods.
If you want to choose one, please try pip uninstall the un-wanted one. And if
you want to have both installed but wanted to use one of them for a function
call(or file type) and the other for another function call(or file type), you can
pass on “library” option to get_data and save_data, e.g.
get_data(.., library=’pyexcel-ods’)

Note

pyexcel-text is no longer a plugin of pyexcel-io but a direct plugin of pyexcel

Plugin compatibility table

	pyexcel-io [https://github.com/pyexcel/pyexcel-io]

	xls [https://github.com/pyexcel/pyexcel-xls]

	xlsx [https://github.com/pyexcel/pyexcel-xlsx]

	ods [https://github.com/pyexcel/pyexcel-ods]

	ods3 [https://github.com/pyexcel/pyexcel-ods3]

	odsr [https://github.com/pyexcel/pyexcel-odsr]

	xlsxw [https://github.com/pyexcel/pyexcel-xlsxw]

	0.5.10+

	0.5.0+

	0.5.0+

	0.5.4

	0.5.3

	0.5.0+

	0.5.0+

	0.5.1+

	0.5.0+

	0.5.0+

	0.5.0+

	0.5.0+

	0.5.0+

	0.5.0+

	0.4.x

	0.4.x

	0.4.x

	0.4.x

	0.4.x

	0.4.x

	0.4.x

	0.3.0+

	0.3.0+

	0.3.0

	0.3.0+

	0.3.0+

	0.3.0

	0.3.0

	0.2.2+

	0.2.2+

	0.2.2+

	0.2.1+

	0.2.1+

	
	0.0.1

	0.2.0+

	0.2.0+

	0.2.0+

	0.2.0

	0.2.0

	
	0.0.1

Migration Note

	Packaging with PyInstaller
	Built-in plugins of pyexcel-io

	pyexcel-xlsx

	pyexcel-xlsxw

	pyexcel-xls

	pyexcel-ods

	pyexcel-ods3

	pyexcel-odsr

Tutorial

	Working with CSV format
	Write to a csv file

	Read from a csv file

	Write a csv to memory

	Read from a csv from memory

	Encoding parameter

	Byte order mark (BOM) in csv file

	Read partial data

	Saving multiple sheets as CSV format
	Write to multiple sibling csv files

	Read from multiple sibling csv files

	Write multiple sibling csv files to memory

	Read multiple sibling csv files from memory

	File formats: .csvz and .tsvz
	Introduction

	Single Sheet

	Multiple Sheet Book

	Open csvz without pyexcel-io

	Working with sqlalchemy
	Write data to a database table

	Read data from a database table

	Write data to multiple tables

	Read data from multiple tables

	Working with django database
	Write data to a django model

	Read data from a django model

	Write data into multiple models

	Read content from multiple tables

	Working with xls, xlsx, and ods formats
	Work with physical file

	Work with memory file

	Other formats

API

	Common parameters
	auto_dectect_datetime

	‘library’ option is added

	csv only parameters

Indices and tables

	Index

	Module Index

	Search Page

Packaging with PyInstaller

With pyexcel-io v0.4.0, the way to package it has been changed because it
uses lml for all plugins.

Built-in plugins of pyexcel-io

In order to package every built-in plugins of pyexcel-io, you need to specify:

--hidden-import pyexcel_io.readers.csvr
--hidden-import pyexcel_io.readers.csvz
--hidden-import pyexcel_io.readers.tsv
--hidden-import pyexcel_io.readers.tsvz
--hidden-import pyexcel_io.writers.csvw
--hidden-import pyexcel_io.readers.csvz
--hidden-import pyexcel_io.readers.tsv
--hidden-import pyexcel_io.readers.tsvz
--hidden-import pyexcel_io.database.importers.django
--hidden-import pyexcel_io.database.importers.sqlalchemy
--hidden-import pyexcel_io.database.exporters.django
--hidden-import pyexcel_io.database.exporters.sqlalchemy

pyexcel-xlsx

In order to package pyexcel-xlsx, you need to specify:

--hidden-import pyexcel_xlsx
--hidden-import pyexcel_xlsx.xlsxr
--hidden-import pyexcel_xlsx.xlsxw

pyexcel-xlsxw

In order to package pyexcel-xlsxw, you need to specify:

--hidden-import pyexcel_xlsxw
--hidden-import pyexcel_xlsxw.xlsxw

pyexcel-xls

In order to package pyexcel-xls, you need to specify:

--hidden-import pyexcel_xls
--hidden-import pyexcel_xls.xlsr
--hidden-import pyexcel_xls.xlsw

pyexcel-ods

In order to package pyexcel-ods, you need to specify:

--hidden-import pyexcel_ods
--hidden-import pyexcel_ods.odsr
--hidden-import pyexcel_ods.odsw

pyexcel-ods3

In order to package pyexcel-ods3, you need to specify:

--hidden-import pyexcel_ods3
--hidden-import pyexcel_ods3.odsr
--hidden-import pyexcel_ods3.odsw

pyexcel-odsr

In order to package pyexcel-odsr, you need to specify:

--hidden-import pyexcel_odsr
--hidden-import pyexcel_odsr.odsr

Working with CSV format

Please note that csv reader load data in a lazy manner. It ignores excessive
trailing cells that has None value. For example, the following csv content:

1,2,,,,,
3,4,,,,,
5,,,,,,,

would end up as:

1,2
3,4
5,

Write to a csv file

Here’s the sample code to write an array to a csv file

>>> import datetime
>>> from pyexcel_io import save_data
>>> data = [
... [1, 2.0, 3.0],
... [
... datetime.date(2016, 5, 4),
... datetime.datetime(2016, 5, 4, 17, 39, 12),
... datetime.datetime(2016, 5, 4, 17, 40, 12, 100)
...]
...]
>>> save_data("your_file.csv", data)

Let’s verify the file content:

>>> with open("your_file.csv", "r") as csvfile:
... for line in csvfile.readlines():
... print(line.strip())
1,2.0,3.0
2016-05-04,2016-05-04 17:39:12,2016-05-04 17:40:12.000100

Change line endings

By default, python csv module provides windows line ending ‘rn’. In order
to change it, you can do:

>>> save_data("your_file.csv", data, lineterminator='\n')

Read from a csv file

And we can read the written csv file back as the following code:

>>> from pyexcel_io import get_data
>>> import pprint
>>> data = get_data("your_file.csv")
>>> pprint.pprint(data['your_file.csv'])
[[1, 2.0, 3.0],
 [datetime.date(2016, 5, 4),
 datetime.datetime(2016, 5, 4, 17, 39, 12),
 datetime.datetime(2016, 5, 4, 17, 40, 12, 100)]]

As you can see, pyexcel-io not only reads the csv file back but also
recognizes the data types: int, float, date and datetime. However, it
does give your cpu some extra job. When you are handling a large csv file and
the cpu budget is of your concern, you may switch off the type detection feature.
For example, let’s switch all off:

>>> data = get_data("your_file.csv", auto_detect_float=False, auto_detect_datetime=False)
 >>> import json
>>> json.dumps(data['your_file.csv'])
'[[1, "2.0", "3.0"], ["2016-05-04", "2016-05-04 17:39:12", "2016-05-04 17:40:12.000100"]]'

In addition to auto_detect_float and auto_detect_datetime, there is another flag named auto_detect_int, which becomes active only if auto_detect_float is True. Now, let’s play a bit with auto_detect_int:

>>> data = get_data("your_file.csv", auto_detect_int=False)
>>> pprint.pprint(data['your_file.csv'])
[[1.0, 2.0, 3.0],
 [datetime.date(2016, 5, 4),
 datetime.datetime(2016, 5, 4, 17, 39, 12),
 datetime.datetime(2016, 5, 4, 17, 40, 12, 100)]]

As you see, all numeric data are identified as float type. If you looked a few paragraphs above, you would notice auto_detect_int affected [1, 2, ..] in the first row.

Write a csv to memory

Here’s the sample code to write a dictionary as a csv into memory:

>>> from pyexcel_io import save_data
>>> data = [[1, 2, 3], [4, 5, 6]]
>>> io = StringIO()
>>> save_data(io, data)
>>> # do something with the io
>>> # In reality, you might give it to your http response
>>> # object for downloading

Read from a csv from memory

Continue from previous example:

>>> # This is just an illustration
>>> # In reality, you might deal with csv file upload
>>> # where you will read from requests.FILES['YOUR_XL_FILE']
>>> import json
>>> data = get_data(io)
>>> print(json.dumps(data))
{"csv": [[1, 2, 3], [4, 5, 6]]}

Encoding parameter

In general, if you would like to save your csv file into a custom encoding, you
can specify ‘encoding’ parameter. Here is how you write verses of
a finnish song, “Aurinko laskee länteen”1 into a csv file

>>> content = [[u'Aurinko laskee länteen', u'Näin sen ja ymmärsin sen', u'Poissa aika on rakkauden Kun aurinko laskee länteen']]
>>> test_file = "test-utf16-encoding.csv"
 >>> save_data(test_file, content, encoding="utf-16", lineterminator="\n")

In the reverse direction, if you would like to read your csv file with custom
encoding back, you do the same to get_data:

>>> custom_encoded_content = get_data(test_file, encoding="utf-16")
 >>> assert custom_encoded_content[test_file] == content

	1

	A finnish song that was entered in Eurovision in 1965. You can check out its lyrics at diggiloo.net [http://www.diggiloo.net/?1965fi]

Byte order mark (BOM) in csv file

By passing **encoding=”utf-8-sig”, You can write UTF-8 BOM header into your csv file.
Here is an example to write a sentence of “Shui Dial Getou”[#f2] into a csv file:

>>> content = [[u'人有悲歡離合', u'月有陰晴圓缺']]
>>> test_file = "test-utf8-BOM.csv"
 >>> save_data(test_file, content, encoding="utf-8-sig", lineterminator="\n")

When you read it back you will have to specify encoding too.

>>> custom_encoded_content = get_data(test_file, encoding="utf-8-sig")
 >>> assert custom_encoded_content[test_file] == content

	2

	One of Su shi’s most famous poem. Here is the wiki link [https://en.wikipedia.org/wiki/Shuidiao_Getou]

Read partial data

When you are dealing with huge amount of data, obviously you would not like to
fill up your memory with those data. Here is a the feature to support pagination
of your data.

Let’s assume the following file is a huge csv file:

>>> import datetime
>>> from pyexcel_io import save_data
>>> data = [
... [1, 21, 31],
... [2, 22, 32],
... [3, 23, 33],
... [4, 24, 34],
... [5, 25, 35],
... [6, 26, 36]
...]
>>> save_data("your_file.csv", data)

And let’s pretend to read partial data:

>>> from pyexcel_io import get_data
>>> data = get_data("your_file.csv", start_row=2, row_limit=3)
>>> data['your_file.csv']
[[3, 23, 33], [4, 24, 34], [5, 25, 35]]

And you could as well do the same for columns:

>>> data = get_data("your_file.csv", start_column=1, column_limit=2)
>>> data['your_file.csv']
[[21, 31], [22, 32], [23, 33], [24, 34], [25, 35], [26, 36]]

Obvious, you could do both at the same time:

>>> data = get_data("your_file.csv",
... start_row=2, row_limit=3,
... start_column=1, column_limit=2)
>>> data['your_file.csv']
[[23, 33], [24, 34], [25, 35]]

The pagination support is available across all pyexcel-io plugins.

Saving multiple sheets as CSV format

Write to multiple sibling csv files

Here’s the sample code to write a dictionary to multiple sibling csv files:

>>> from pyexcel_io import save_data
>>> data = OrderedDict() # from collections import OrderedDict
>>> data.update({"Sheet 1": [[1, 2, 3], [4, 5, 6]]})
>>> data.update({"Sheet 2": [["row 1", "row 2", "row 3"]]})
>>> save_data("your_file.csv", data)

Read from multiple sibling csv files

Here’s the sample code:

>>> from pyexcel_io import get_data
>>> data = get_data("your_file.csv")
>>> import json
>>> print(json.dumps(data))
{"Sheet 1": [[1, 2, 3], [4, 5, 6]], "Sheet 2": [["row 1", "row 2", "row 3"]]}

Here is what you would get:

>>> import glob
>>> list = glob.glob("your_file__*.csv")
>>> json.dumps(sorted(list))
'["your_file__Sheet 1__0.csv", "your_file__Sheet 2__1.csv"]'

Write multiple sibling csv files to memory

Here’s the sample code to write a dictionary of named two dimensional array
into memory:

>>> from pyexcel_io import save_data
>>> data = OrderedDict()
>>> data.update({"Sheet 1": [[1, 2, 3], [4, 5, 6]]})
>>> data.update({"Sheet 2": [[7, 8, 9], [10, 11, 12]]})
>>> io = StringIO()
>>> save_data(io, data)
>>> # do something with the io
>>> # In reality, you might give it to your http response
>>> # object for downloading

Read multiple sibling csv files from memory

Continue from previous example:

>>> # This is just an illustration
>>> # In reality, you might deal with csv file upload
>>> # where you will read from requests.FILES['YOUR_XL_FILE']
>>> data = get_data(io, multiple_sheets=True)
>>> print(json.dumps(data))
{"Sheet 1": [[1, 2, 3], [4, 5, 6]], "Sheet 2": [[7, 8, 9], [10, 11, 12]]}

File formats: .csvz and .tsvz

Introduction

‘csvz’ and ‘tsvz’ are newly invented excel file formats by pyexcel. Simply put, ‘csvz’ is the zipped content of one or more csv file(s). ‘tsvz’ is the twin brother of ‘csvz’. They are similiar to the implementation of xlsx format, which is a zip of excel content in xml format.

The obvious tangile benefit of zipped csv over normal csv is the reduced file size. However, the drawback is the need of unzipping software.

Single Sheet

When a single sheet is to be saved, the resulting csvz file will be a zip file that contains one csv file bearing the name of Sheet [https://pyexcel.readthedocs.io/en/latest/generated/pyexcel.Sheet.html#pyexcel.Sheet].

>>> from pyexcel_io import save_data
>>> data = [[1,2,3]]
>>> save_data("myfile.csvz", data)
>>> import zipfile
>>> zip = zipfile.ZipFile("myfile.csvz", 'r')
>>> zip.namelist()
['pyexcel_sheet1.csv']
>>> zip.close()

And it can be read out as well and can be saved in any other supported format.

>>> from pyexcel_io import get_data
>>> data = get_data("myfile.csvz")
>>> import json
>>> json.dumps(data)
'{"pyexcel_sheet1": [[1, 2, 3]]}'

Multiple Sheet Book

	When multiple sheets are to be saved as a book, the resulting csvz file will be a zip file that contains each sheet as a csv file named after corresponding sheet name.

	>>> from pyexcel_io._compact import OrderedDict
>>> content = OrderedDict()
>>> content.update({
... 'Sheet 1':
... [
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0],
... [7.0, 8.0, 9.0]
...]
... })
>>> content.update({
... 'Sheet 2':
... [
... ['X', 'Y', 'Z'],
... [1.0, 2.0, 3.0],
... [4.0, 5.0, 6.0]
...]
... })
>>> content.update({
... 'Sheet 3':
... [
... ['O', 'P', 'Q'],
... [3.0, 2.0, 1.0],
... [4.0, 3.0, 2.0]
...]
... })
>>> save_data("mybook.csvz", content)
>>> import zipfile
>>> zip = zipfile.ZipFile("mybook.csvz", 'r')
>>> zip.namelist()
['Sheet 1.csv', 'Sheet 2.csv', 'Sheet 3.csv']
>>> zip.close()

The csvz book can be read back with two lines of code. And once it is read out, it can be saved in any other supported format.

>>> book2 = get_data("mybook.csvz")
>>> json.dumps(book2)
'{"Sheet 1": [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], "Sheet 2": [["X", "Y", "Z"], [1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], "Sheet 3": [["O", "P", "Q"], [3.0, 2.0, 1.0], [4.0, 3.0, 2.0]]}'

Open csvz without pyexcel-io

All you need is a unzipping software. I would recommend 7zip which is open source and is available on all available OS platforms.

On latest Windows platform (windows 8), zip file is supported so just give the “csvz” file a file extension as “.zip”. The file can be opened by File Explorer.

Working with sqlalchemy

Suppose we have a pure sql database connection via sqlalchemy:

>>> from sqlalchemy import create_engine
>>> from sqlalchemy.ext.declarative import declarative_base
>>> from sqlalchemy import Column , Integer, String, Float, Date
>>> from sqlalchemy.orm import sessionmaker
>>> engine=create_engine("sqlite:///sqlalchemy.db")
>>> Base=declarative_base()
>>> Session=sessionmaker(bind=engine)

Write data to a database table

Assume we have the following database table:

>>> class Pyexcel(Base):
... __tablename__='pyexcel'
... id=Column(Integer, primary_key=True)
... name=Column(String)
... weight=Column(Float)
... birth=Column(Date)

Let’s clear the database and create previous table in the database:

>>> Base.metadata.create_all(engine)

And suppose we have the following data structure to be saved:

>>> import datetime
>>> data = [
... ['birth', 'id', 'name', 'weight'],
... [datetime.date(2014, 11, 11), 0, 'Adam', 11.25],
... [datetime.date(2014, 11, 12), 1, 'Smith', 12.25]
...]

Here’s the actual code to achieve it:

>>> from pyexcel_io import save_data
>>> from pyexcel_io.constants import DB_SQL, DEFAULT_SHEET_NAME
>>> from pyexcel_io.database.common import SQLTableImporter, SQLTableImportAdapter
>>> mysession = Session()
>>> importer = SQLTableImporter(mysession)
>>> adapter = SQLTableImportAdapter(Pyexcel)
>>> adapter.column_names = data[0]
>>> importer.append(adapter)
>>> save_data(importer, {adapter.get_name(): data[1:]}, file_type=DB_SQL)

Please note that, the data dict shall have table name as its key. Now let’s verify the data:

>>> from pyexcel_io.database.querysets import QuerysetsReader
>>> query_sets=mysession.query(Pyexcel).all()
 >>> reader = QuerysetsReader(query_sets, data[0])
>>> results = reader.to_array()
>>> import json
>>> json.dumps(list(results))
'[["birth", "id", "name", "weight"], ["2014-11-11", 0, "Adam", 11.25], ["2014-11-12", 1, "Smith", 12.25]]'

Read data from a database table

Let’s use previous data for reading and see if we could get them via
get_data() :

>>> from pyexcel_io import get_data
>>> from pyexcel_io.database.common import SQLTableExporter, SQLTableExportAdapter
>>> exporter = SQLTableExporter(mysession)
>>> adapter = SQLTableExportAdapter(Pyexcel)
>>> exporter.append(adapter)
>>> data = get_data(exporter, file_type=DB_SQL)
>>> json.dumps(list(data['pyexcel']))
'[["birth", "id", "name", "weight"], ["2014-11-11", 0, "Adam", 11.25], ["2014-11-12", 1, "Smith", 12.25]]'

Read a subset from the table:

>>> exporter = SQLTableExporter(mysession)
>>> adapter = SQLTableExportAdapter(Pyexcel, ['birth'])
>>> exporter.append(adapter)
>>> data = get_data(exporter, file_type=DB_SQL)
>>> json.dumps(list(data['pyexcel']))
'[["birth"], ["2014-11-11"], ["2014-11-12"]]'

Write data to multiple tables

Before we start, let’s clear off previous table:

>>> Base.metadata.drop_all(engine)

Now suppose we have these more complex tables:

>>> from sqlalchemy import ForeignKey, DateTime
>>> from sqlalchemy.orm import relationship, backref
>>> import sys
>>> class Post(Base):
... __tablename__ = 'post'
... id = Column(Integer, primary_key=True)
... title = Column(String(80))
... body = Column(String(100))
... pub_date = Column(DateTime)
...
... category_id = Column(Integer, ForeignKey('category.id'))
... category = relationship('Category',
... backref=backref('posts', lazy='dynamic'))
...
... def __init__(self, title, body, category, pub_date=None):
... self.title = title
... self.body = body
... if pub_date is None:
... pub_date = datetime.utcnow()
... self.pub_date = pub_date
... self.category = category
...
... def __repr__(self):
... return '<Post %r>' % self.title
...
>>> class Category(Base):
... __tablename__ = 'category'
... id = Column(Integer, primary_key=True)
... name = Column(String(50))
...
... def __init__(self, name):
... self.name = name
...
... def __repr__(self):
... return '<Category %r>' % self.name
... def __str__(self):
... return self.__repr__()

Let’s clear the database and create previous table in the database:

>>> Base.metadata.create_all(engine)

Suppose we have these data:

>>> data = {
... "Category":[
... ["id", "name"],
... [1, "News"],
... [2, "Sports"]
...],
... "Post":[
... ["id", "title", "body", "pub_date", "category"],
... [1, "Title A", "formal", datetime.datetime(2015,1,20,23,28,29), "News"],
... [2, "Title B", "informal", datetime.datetime(2015,1,20,23,28,30), "Sports"]
...]
... }

Both table has gotten initialization functions:

>>> def category_init_func(row):
... c = Category(row['name'])
... c.id = row['id']
... return c

and particularly Post has a foreign key to Category, so we need to
query Category out and assign it to Post instance

>>> def post_init_func(row):
... c = mysession.query(Category).filter_by(name=row['category']).first()
... p = Post(row['title'], row['body'], c, row['pub_date'])
... return p

Here’s the code to update both:

>>> tables = {
... "Category": [Category, data['Category'][0], None, category_init_func],
... "Post": [Post, data['Post'][0], None, post_init_func]
... }
>>> from pyexcel_io._compact import OrderedDict
>>> importer = SQLTableImporter(mysession)
>>> adapter1 = SQLTableImportAdapter(Category)
>>> adapter1.column_names = data['Category'][0]
>>> adapter1.row_initializer = category_init_func
>>> importer.append(adapter1)
>>> adapter2 = SQLTableImportAdapter(Post)
>>> adapter2.column_names = data['Post'][0]
>>> adapter2.row_initializer = post_init_func
>>> importer.append(adapter2)
>>> to_store = OrderedDict()
>>> to_store.update({adapter1.get_name(): data['Category'][1:]})
>>> to_store.update({adapter2.get_name(): data['Post'][1:]})
>>> save_data(importer, to_store, file_type=DB_SQL)

Let’s verify what do we have in the database:

>>> query_sets = mysession.query(Category).all()
>>> reader = QuerysetsReader(query_sets, data['Category'][0])
 >>> results = reader.to_array()
>>> import json
>>> json.dumps(list(results))
'[["id", "name"], [1, "News"], [2, "Sports"]]'
>>> query_sets = mysession.query(Post).all()
>>> reader = QuerysetsReader(query_sets, ["id", "title", "body", "pub_date"])
 >>> results = reader.to_array()
>>> json.dumps(list(results))
'[["id", "title", "body", "pub_date"], [1, "Title A", "formal", "2015-01-20T23:28:29"], [2, "Title B", "informal", "2015-01-20T23:28:30"]]'

Skipping existing record

When you import data into a database that has data already, you can skip existing record if
pyexcel_io.PyexcelSQLSkipRowException is raised. Example can be found here in test
code [https://github.com/chfw/pyexcel-io/blob/master/tests/test_sql_book.py#L125].

Update existing record

When you import data into a database that has data already, you can update an existing record
if you can query it from the database and set the data yourself and most importantly return it.
You can find an example in test skipping row [https://github.com/chfw/pyexcel-io/blob/master/tests/test_sql_book.py#L162]

Read data from multiple tables

Let’s use previous data for reading and see if we could get them via
get_data() :

>>> exporter = SQLTableExporter(mysession)
>>> adapter = SQLTableExportAdapter(Category)
>>> exporter.append(adapter)
>>> adapter = SQLTableExportAdapter(Post)
>>> exporter.append(adapter)
>>> data = get_data(exporter, file_type=DB_SQL)
>>> json.dumps(data)
'{"category": [["id", "name"], [1, "News"], [2, "Sports"]], "post": [["body", "category_id", "id", "pub_date", "title"], ["formal", 1, 1, "2015-01-20T23:28:29", "Title A"], ["informal", 2, 2, "2015-01-20T23:28:30", "Title B"]]}'

What if we read a subset per each table

>>> exporter = SQLTableExporter(mysession)
>>> adapter = SQLTableExportAdapter(Category, ['name'])
>>> exporter.append(adapter)
>>> adapter = SQLTableExportAdapter(Post, ['title'])
>>> exporter.append(adapter)
>>> data = get_data(exporter, file_type=DB_SQL)
>>> json.dumps(data)
'{"category": [["name"], ["News"], ["Sports"]], "post": [["title"], ["Title A"], ["Title B"]]}'

Working with django database

This section shows the way to to write and read from django database. Becuase it
is “heavy”” to include a django site here to show you. A mocked django model is
used here to demonstate it:

>>> class FakeDjangoModel:
... def __init__(self):
... self.objects = Objects()
... self._meta = Meta()
...
... def __call__(self, **keywords):
... return keywords

Note

You can visit
django-excel documentation [http://django-excel.readthedocs.org/en/latest/]
if you would prefer a real django model to be used in tutorial.

Write data to a django model

Let’s suppose we have a django model:

>>> from pyexcel_io import save_data
>>> from pyexcel_io.constants import DB_DJANGO, DEFAULT_SHEET_NAME
>>> from pyexcel_io.database.common import DjangoModelImporter, DjangoModelImportAdapter
>>> from pyexcel_io.database.common import DjangoModelExporter, DjangoModelExportAdapter
>>> model = FakeDjangoModel()

Suppose you have these data:

>>> data = [
... ["X", "Y", "Z"],
... [1, 2, 3],
... [4, 5, 6]
...]
>>> importer = DjangoModelImporter()
>>> adapter = DjangoModelImportAdapter(model)
>>> adapter.column_names = data[0]
>>> importer.append(adapter)
>>> save_data(importer, {adapter.get_name(): data[1:]}, file_type=DB_DJANGO)
>>> import pprint
>>> pprint.pprint(model.objects.objs)
[{'X': 1, 'Y': 2, 'Z': 3}, {'X': 4, 'Y': 5, 'Z': 6}]

Read data from a django model

Continue from previous example, you can read this back:

>>> from pyexcel_io import get_data
>>> exporter = DjangoModelExporter()
>>> adapter = DjangoModelExportAdapter(model)
>>> exporter.append(adapter)
>>> data = get_data(exporter, file_type=DB_DJANGO)
>>> data
OrderedDict([('Sheet0', [['X', 'Y', 'Z'], [1, 2, 3], [4, 5, 6]])])

Read a sub set of the columns:

>>> exporter = DjangoModelExporter()
>>> adapter = DjangoModelExportAdapter(model, ['X'])
>>> exporter.append(adapter)
>>> data = get_data(exporter, file_type=DB_DJANGO)
>>> data
OrderedDict([('Sheet0', [['X'], [1], [4]])])

Write data into multiple models

Suppose you have the following data to be stored in the database:

>>> data = {
... "Sheet1": [['X', 'Y', 'Z'], [1, 4, 7], [2, 5, 8], [3, 6, 9]],
... "Sheet2": [['A', 'B', 'C'], [1, 4, 7], [2, 5, 8], [3, 6, 9]]
... }

And want to save them to two django models:

>>> model1 = FakeDjangoModel()
>>> model2 = FakeDjangoModel()

In order to store a dictionary data structure, you need to do some transformation:

>>> importer = DjangoModelImporter()
>>> adapter1 = DjangoModelImportAdapter(model1)
>>> adapter1.column_names = data['Sheet1'][0]
>>> adapter2 = DjangoModelImportAdapter(model2)
>>> adapter2.column_names = data['Sheet2'][0]
>>> importer.append(adapter1)
>>> importer.append(adapter2)
>>> to_store = {
... adapter1.get_name(): data['Sheet1'][1:],
... adapter2.get_name(): data['Sheet2'][1:]
... }
>>> save_data(importer, to_store, file_type=DB_DJANGO)
>>> pprint.pprint(model1.objects.objs)
[{'X': 1, 'Y': 4, 'Z': 7}, {'X': 2, 'Y': 5, 'Z': 8}, {'X': 3, 'Y': 6, 'Z': 9}]
>>> pprint.pprint(model2.objects.objs)
[{'A': 1, 'B': 4, 'C': 7}, {'A': 2, 'B': 5, 'C': 8}, {'A': 3, 'B': 6, 'C': 9}]

Read content from multiple tables

Here’s what you need to do:

>>> exporter = DjangoModelExporter()
>>> adapter1 = DjangoModelExportAdapter(model1)
>>> adapter2 = DjangoModelExportAdapter(model2)
>>> exporter.append(adapter1)
>>> exporter.append(adapter2)
>>> data = get_data(exporter, file_type=DB_DJANGO)
>>> data
OrderedDict([('Sheet1', [['X', 'Y', 'Z'], [1, 4, 7], [2, 5, 8], [3, 6, 9]]), ('Sheet2', [['A', 'B', 'C'], [1, 4, 7], [2, 5, 8], [3, 6, 9]])])

What if we need only a subset of each model

>>> exporter = DjangoModelExporter()
>>> adapter1 = DjangoModelExportAdapter(model1, ['X'])
>>> adapter2 = DjangoModelExportAdapter(model2, ['A'])
>>> exporter.append(adapter1)
>>> exporter.append(adapter2)
>>> data = get_data(exporter, file_type=DB_DJANGO)
>>> data
OrderedDict([('Sheet1', [['X'], [1], [2], [3]]), ('Sheet2', [['A'], [1], [2], [3]])])

Working with xls, xlsx, and ods formats

Note

No longer, you will need to do explicit imports for pyexcel-io extensions.
Instead, you install them and manage them via pip.

Work with physical file

Here’s what is needed:

>>> from pyexcel_io import save_data
>>> data = [[1,2,3]]
>>> save_data("test.xls", data)

And you can also get the data back:

>>> from pyexcel_io import get_data
>>> data = get_data("test.xls")
>>> data['pyexcel_sheet1']
[[1, 2, 3]]

Work with memory file

Here is the sample code to work with memory file:

>>> from pyexcel_io.manager import get_io
>>> io = get_io("xls")
>>> data = [[1,2,3]]
>>> save_data(io, data, "xls")

The difference is that you have mention file type if you use pyexcel_io.save_data()

And you can also get the data back:

>>> data = get_data(io, "xls")
>>> data['pyexcel_sheet1']
[[1, 2, 3]]

The same applies to pyexcel_io.get_data().

Other formats

As illustrated above, you can start to play with pyexcel-xlsx, pyexcel-ods and
pyexcel-ods3 plugins.

Common parameters

auto_dectect_datetime

The datetime formats are:

	%Y-%m-%d

	%Y-%m-%d %H:%M:%S

	%Y-%m-%d %H:%M:%S.%f

Any other datetime formats will be thrown as ValueError

‘library’ option is added

In order to have overlapping plugins co-exit, ‘library’ option is added to
get_data and save_data.

csv only parameters

pep_0515_off

This is related to PEP 0515 [https://www.python.org/dev/peps/pep-0515/], where
‘_’ in numeric values are considered legal in python 3.6. This behavior is
not consistent along with other python versions. PEP 0515 by default is suppressed.
And this flag allows you to turn it on in python 3.6.

Index

 G
 | S

G

 	
 	get_data() (in module pyexcel_io)

S

 	
 	save_data() (in module pyexcel_io)

 Rendering(Formatting) the data

You might want to do custom rendering on your data obtained. row_renderer was
added since version 0.2.3. Here is how you can use it.

Let’s assume the following file:

>>> import datetime
>>> from pyexcel_io import save_data
>>> data = [
... [1, 21, 31],
... [2, 22, 32],
... [3, 23, 33]
...]
>>> save_data("your_file.csv", data)

And let’s read them back:

>>> from pyexcel_io import get_data
>>> data = get_data("your_file.csv")
>>> data['your_file.csv']
[[1, 21, 31], [2, 22, 32], [3, 23, 33]]

And you may want use row_renderer to customize it to string:

>>> def my_renderer(row):
... return [str(element) for element in row]
>>> data = get_data("your_file.csv", row_renderer=my_renderer)
>>> data['your_file.csv']
[['1', '21', '31'], ['2', '22', '32'], ['3', '23', '33']]

pyexcel_io.get_data

	
pyexcel_io.get_data(afile, file_type=None, streaming=None, **keywords)

	Get data from an excel file source

	Parameters

	
	afile – a file name, a file stream or actual content

	sheet_name – the name of the sheet to be loaded

	sheet_index – the index of the sheet to be loaded

	file_type – used only when filename is not a physial file name

	streaming – toggles the type of returned data. The values of the
returned dictionary remain as generator if it is set
to True. Default is False.

	library – explicitly name a library for use.
e.g. library=’pyexcel-ods’

	auto_detect_float – defaults to True

	auto_detect_int – defaults to True

	auto_detect_datetime – defaults to True

	ignore_infinity – defaults to True

	keywords – any other library specific parameters

	Returns

	an ordered dictionary

pyexcel_io.save_data

	
pyexcel_io.save_data(afile, data, file_type=None, **keywords)

	Save data to an excel file source

Your data must be a dictionary

	Parameters

	
	filename – actual file name, a file stream or actual content

	data – a dictionary but an ordered dictionary is preferred

	file_type – used only when filename is not a physial file name

	library – explicitly name a library for use.
e.g. library=’pyexcel-ods’

	keywords – any other parameters that python csv module’s
fmtparams [https://docs.python.org/release/3.1.5/library/csv.html#dialects-and-formatting-parameters]

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 pyexcel-io - Let you focus on data, instead of file formats

 		
 Packaging with PyInstaller

 		
 Built-in plugins of pyexcel-io

 		
 pyexcel-xlsx

 		
 pyexcel-xlsxw

 		
 pyexcel-xls

 		
 pyexcel-ods

 		
 pyexcel-ods3

 		
 pyexcel-odsr

 		
 Working with CSV format

 		
 Write to a csv file

 		
 Change line endings

 		
 Read from a csv file

 		
 Write a csv to memory

 		
 Read from a csv from memory

 		
 Encoding parameter

 		
 Byte order mark (BOM) in csv file

 		
 Read partial data

 		
 Saving multiple sheets as CSV format

 		
 Write to multiple sibling csv files

 		
 Read from multiple sibling csv files

 		
 Write multiple sibling csv files to memory

 		
 Read multiple sibling csv files from memory

 		
 File formats: .csvz and .tsvz

 		
 Introduction

 		
 Single Sheet

 		
 Multiple Sheet Book

 		
 Open csvz without pyexcel-io

 		
 Working with sqlalchemy

 		
 Write data to a database table

 		
 Read data from a database table

 		
 Write data to multiple tables

 		
 Skipping existing record

 		
 Update existing record

 		
 Read data from multiple tables

 		
 Working with django database

 		
 Write data to a django model

 		
 Read data from a django model

 		
 Write data into multiple models

 		
 Read content from multiple tables

 		
 Working with xls, xlsx, and ods formats

 		
 Work with physical file

 		
 Work with memory file

 		
 Other formats

 		
 Common parameters

 		
 auto_dectect_datetime

 		
 ‘library’ option is added

 		
 csv only parameters

 		
 pep_0515_off

_static/minus.png

_static/plus.png

_static/up-pressed.png

_static/up.png

