pyexcel-io Documentation
Release 0.2.0

Onni Software Ltd.

January 11, 2017

Contents

Introduction 3
Getting the source 5
Installation 7
Special note 9
Tutorial 11
5.1 Working with CSV format e 11
5.2 Saving multiple sheets as CSV format L o 12
5.3 Fileformats: .csvzand SVZ Lo e e e e 13
5.4 Working with sqlalchemy e e e e 15
5.5 Working with django database L 18
5.6 Working with xls, xIsx, and ods formats 20
API 23

Indices and tables 25

pyexcel-io Documentation, Release 0.2.0

Author C.W.

Source code http://github.com/pyexcel/pyexcel-io
Issues http://github.com/pyexcel/pyexcel-io/issues
License New BSD License

Version 0.2.0

Generated January 11,2017

Contents 1

http://github.com/pyexcel/pyexcel-io
http://github.com/pyexcel/pyexcel-io/issues

pyexcel-io Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Introduction

pyexcel-io provides one application programming interface(API) to read and write data in different excel formats. It
makes information processing involving excel files a simple task. The data in excel files can be turned into an ordered
dictionary with least code. This library focuses on data processing using excel files as storage media hence fonts,
colors and charts were not and will not be considered.

It was created due to the lack of uniform programming interface to access data in different excel formats. A developer
needs to use different methods of different libraries to read the same data in different excel formats, hence the resulting
code is cluttered and unmaintainable. This is a challenge posed by users who do not know or care about the differences
in excel file formats. Instead of educating the users about the specific excel format a data processing application
supports, the library takes up the challenge and promises to support all known excel formats.

All great work have done by individual library developers. This library unites only the data access API. With that said,
pyexcel-io also bring something new on the table: “csvz” and “tsvz” format, new format names as of 2014. They are
invented and supported by pyexcel-io.

https://github.com/pyexcel/pyexcel-io

pyexcel-io Documentation, Release 0.2.0

4 Chapter 1. Introduction

CHAPTER 2

Getting the source

Source code is hosted in github. You can get it using git client:

$ git clone http://github.com/pyexcel/pyexcel-io.git

pyexcel-io Documentation, Release 0.2.0

6 Chapter 2. Getting the source

CHAPTER 3

Installation

You can install it via pip:

$ pip install pyexcel-io

For individual excel file formats, please install them as you wish:

Table 3.1: a map of plugins and supported excel file formats

Package name Supported file formats Dependencies Python versions

pyexcel-io csv, esvz | tsv, 2.6,2.7,3.3,3.4, pypy
tsvz 2

xls xls, xlsx(read only), xIrd, xIwt 2.6,2.7,3.3,3.4, pypy
xlsm(read only)

xIsx xlsx openpyxl 2.6,2.7,3.3,3.4, pypy

ods3 ods ezodf, Ixml 2.6,2.7,33,34

ods ods (python 2.6, 2.7) odfpy 2.6,2.7

Please import them before you start to access the desired file formats:

import pyexcel plugin

After that, you can start get and save data in the loaded format.

Table 3.2: Plugin compatibility table

pyexcel-io | xls xlsx | ods | ods3 | text

0.2.0 02.0 | 0.2.0 | 0.2.0 | 020 | 0.2.0

0.1.0 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0 | 0.1.0
Izipped csv file

2zipped tsv file

https://github.com/pyexcel/pyexcel-io
https://github.com/pyexcel/pyexcel-xls
https://github.com/pyexcel/pyexcel-xlsx
https://github.com/pyexcel/pyexcel-ods3
https://github.com/pyexcel/pyexcel-ods
https://github.com/pyexcel/pyexcel-io
https://github.com/pyexcel/pyexcel-xls
https://github.com/pyexcel/pyexcel-xlsx
https://github.com/pyexcel/pyexcel-ods
https://github.com/pyexcel/pyexcel-ods3
https://github.com/pyexcel/pyexcel-text

pyexcel-io Documentation, Release 0.2.0

8 Chapter 3. Installation

CHAPTER 4

Special note

migration_from_dot_1_to_dot_2

pyexcel-io Documentation, Release 0.2.0

10 Chapter 4. Special note

CHAPTER 5

Tutorial

5.1 Working with CSV format

Please note that csv reader load data in a lazy manner. It ignores excessive trailing cells that has None value. For
example, the following csv content:

1121IIII
31417111
5

rrrorororo

would end up as:

;2
4

’

o w =

’

5.1.1 Write to a csv file

Here’s the sample code to write an array to a csv file

>>> from pyexcel_ io import save_data
>>> data = [[1, 2, 31, [4, 5, 61]
>>> save_data("your_file.csv", data)

Change line endings

By default, python csv module provides windows line ending ‘rn’. In order to change it, you can do:

‘>>> save_data ("your_file.csv", data, lineterminator='\n')

5.1.2 Read from a csv file

Here’s the sample code:

>>> from pyexcel_io import get_data

>>> data = get_data("your_ file.csv")

>>> import json

>>> print (json.dumps (data))

{"your_file.csv": [["1", "2", "3"], ["4", "5", "6"]]}

11

pyexcel-io Documentation, Release 0.2.0

5.1.3 Write a csv to memory

Here’s the sample code to write a dictionary as a csv into memory:

>>> from pyexcel_ io import save_data

>>> data = [[1, 2, 3], [4, 5, 6]]

>>> 1o = StringIO()

>>> save_data (io, data)

>>> # do something with the io

>>> # In reality, you might give it to your http response
>>> # object for downloading

5.1.4 Read from a csv from memory

Continue from previous example:

>>> # This is just an illustration

>>> # In reality, you might deal with csv file upload

>>> # where you will read from requests.FILES['YOUR_XI_FILE']
>>> data = get_data(io)

>>> print (json.dumps (data))

{"csv": [["1", "2", "3"], ["4", "5", "6"]]}

5.2 Saving multiple sheets as CSV format

5.2.1 Write to multiple sibling csv files

Here’s the sample code to write a dictionary to multiple sibling csv files:

>>> from pyexcel io import save_data

>>> data = OrderedDict () # from collections import OrderedDict
>>> data.update ({"Sheet 1": [[1, 2, 31, [4, 5, 611})
>>> data.update ({"Sheet 2": [["row 1", "row 2", "row 3"]]})

>>> save_data ("your_ file.csv", data)

5.2.2 Read from multiple sibling csv files

Here’s the sample code:

>>> from pyexcel io import get_data

>>> data = get_data("your_file.csv")

>>> import json

>>> print (json.dumps (data))

{"Sheet 1": [["1", "2", "3"], ["4", "5", "6"]], "Sheet 2": [["row 1",

"row 2", "row 31!]]

Here is what you would get:

>>> import glob

>>> list = glob.glob("your_file__x.csv")

>>> json.dumps (sorted(list))

'["your_file_ Sheet 1_ 0.csv", "your_file_ Sheet 2__1l.csv"]'

12

Chapter 5. Tutorial

pyexcel-io Documentation, Release 0.2.0

5.2.3 Write multiple sibling csv files to memory

Here’s the sample code to write a dictionary of named two dimensional array into memory:

>>> from pyexcel_ io import save_data
>>> data = OrderedDict ()

>>> data.update ({"Sheet 1": [[1, 2, 31, [4, 5, 611})
>>> data.update ({"Sheet 2": [[7, 8, 9], [10, 11, 1211})
>>> io = StringIO()

>>> save_data (io, data)

>>> # do something with the io

>>> # In reality, you might give it to your http response
>>> # object for downloading

5.2.4 Read multiple sibling csv files from memory

Continue from previous example:

>>> # This is just an illustration

>>> # In reality, you might deal with csv file upload

>>> # where you will read from requests.FILES['YOUR_XI_FILE']
>>> data = get_data(io)

>>> print (json.dumps (data))

{"Sheet . [["l", "2le "3"], ["4", "5", "6"1], "Sheet 2": [[ll7ll, ll8ll, "9"]’ ["lO", "11',

5.3 File formats: .csvz and .tsvz

5.3.1 Introduction

‘csvz’ and ‘tsvz’ are newly invented excel file formats by pyexcel. Simply put, ‘csvz’ is the zipped content of one or
more csv file(s). ‘tsvz’ is the twin brother of ‘csvz’. They are similiar to the implementation of xIsx format, which is
a zip of excel content in xml format.

The obvious tangile benefit of zipped csv over normal csv is the reduced file size. However, the drawback is the need
of unzipping software.

5.3.2 Single Sheet

When a single sheet is to be saved, the resulting csvz file will be a zip file that contains one csv file bearing the name
of Sheet.

>>> from pyexcel_io import save_data

>>> data = [[1,2,3]]

>>> save_data("myfile.csvz", data)

>>> import zipfile

>>> zip = zipfile.ZipFile("myfile.csvz", 'r')
>>> zip.namelist ()

['pyexcel_sheetl.csv']

>>> zip.close()

And it can be read out as well and can be saved in any other supported format.

5.3. File formats: .csvz and .tsvz 13

l|12ll] J}

http://pyexcel.readthedocs.org/en/latest/generated/pyexcel.Sheet.html#pyexcel.Sheet

pyexcel-io Documentation, Release 0.2.0

>>> from pyexcel_ io import get_data
data = get_data("myfile.csvz")
import Jjson
json.dumps (data)
'{"pyexcel_sheetl":

>>>
>>>
>>>

[["1"’ H2"’ H3"]]}l

5.3.3 Multiple Sheet Book

When multiple sheets are to be saved as a book, the resulting csvz file will be a zip file that contains each sheet as a csv file name

>>> from pyexcel_ io._compact
content = OrderedDict ()
content .update ({

'Sheet 1':

import OrderedDict
>>>
>>>

~
@ U1 N
oo o
~ 0~ 0~
O o W

1)
content .update ({
'Sheet 2':

>>>

1)
content .update ({
'Sheet 3':

>>>

1)

save_data ("mybook.
import zipfile

zip = zipfile.ZipFile ("mybook.csvz",
>>> zip.namelist ()

['Sheet 1.csv', 'Sheet 2.csv',
>>> zip.close()

>>> csvz", content)

>>>

>>> r')

'Sheet 3.csv']

The csvz book can be read back with two lines of code. And once it is read out, it can be saved in any other supported
format.

>>> pbook2 = get_data ("mybook.csvz")
>>> json.dumps (book2)

'{"Sheet . [["1.0", "2.0", "3.0"}, ["4.0", "5.0", "6.0"], ["7.0", "8.0", "9-0"}]/ "Shd

pet 2"

5.3.4 Open csvz without pyexcel-io

All you need is a unzipping software. I would recommend 7zip which is open source and is available on all available
OS platforms.

14 Chapter 5. Tutorial

[["X"

pyexcel-io Documentation, Release 0.2.0

)

On latest Windows platform (windows 8), zip file is supported so just give the “csvz” file a file extension as ”.zip”.
The file can be opened by File Explorer.

5.4 Working with sqlalchemy

Suppose we have a pure sql database connection via sqlalchemy:

>>> from sglalchemy import create_engine

>>> from sqglalchemy.ext.declarative import declarative_base

>>> from sglalchemy import Column , Integer, String, Float, Date
>>> from sqglalchemy.orm import sessionmaker

>>> engine=create_engine ("sglite:///sgqlalchemy.db")

>>> Base=declarative_base ()

>>> Session=sessionmaker (bind=engine)

5.4.1 Write data to a database table

Assume we have the following database table:

>>> class Pyexcel (Base) :
__tablename_ ='pyexcel'
id=Column (Integer, primary_key=True)
name=Column (String)
weight=Column (Float)
birth=Column (Date)

Let’s clear the database and create previous table in the database:

>>> Base.metadata.create_all (engine)

And suppose we have the following data structure to be saved:

>>> import datetime

>>> data = [
['"birth', 'id', 'name', 'weight'],
[datetime.date (2014, 11, 11), 0, 'Adam', 11.25],
[datetime.date (2014, 11, 12), 1, 'Smith', 12.25]

Here’s the actual code to achieve it:

>>> from pyexcel_io import save_data
>>> from pyexcel io.constants import DB_SQL, DEFAULT_SHEET_NAME
>>> from pyexcel_ io.sglbook import SQLTableImporter, SQLTableImportAdapter

>>> mysession = Session|()

>>> importer = SQLTableImporter (mysession)

>>> adapter = SQLTableImportAdapter (Pyexcel)

>>> adapter.column_names = datalO0]

>>> importer.append (adapter)

>>> save_data (importer, {adapter.get_name(): data[l:]}, file_type=DB_SQL)

Now let’s verify the data:

>>> from pyexcel_ io.base import from_guery_sets
>>> query_sets=mysession.query (Pyexcel) .all()
>>> results = from_query_sets(datal[0], query_sets)

5.4. Working with sqglalchemy 15

pyexcel-io Documentation, Release 0.2.0

>>> import json
>>> json.dumps (list (results))

'[["birth", "id", "name", "weight"], (["2014-11-11", O, "Adam", 11.25], ["2014-11-12", 1

5.4.2 Read data from a database table

Let’s use previous data for reading and see if we could get them via get_data () :

>>> from pyexcel_ io import get_data

from pyexcel io.sqglbook import SQLTableExporter,
exporter = SQLTableExporter (mysession)

adapter = SQLTableExportAdapter (Pyexcel)
exporter.append (adapter)

data = get_data (exporter, file_type=DB_SQL)

>>> json.dumps (list (data['pyexcel']))
'[["birth", "id", "name", "weight"],

>>> SQLTableExportAdapter
>>>
>>>
>>>

>>>

[("2014-11-11", 0, "Adam", 11.25], ["2014-11-12", 1

5.4.3 Write data to multiple tables

Before we start, let’s clear off previous table:

‘>>> Base.metadata.drop_all (engine)

Now suppose we have these more complex tables:

>>>
>>>
>>>

DateTime
backref

from sglalchemy import ForeignKey,
from sglalchemy.orm import relationship,
import sys

>>> class Post (Base) :

__tablename__ = 'po
id = Column (Integer
title = Column (Stri
body = Column (Strin
pub_date = Column (D

category_id =
category = relation
backref=backref

def _ init_ (self,
self.title = ti
self.body = bod

if pub_date is
pub_date =
self.pub_date =
self.category =

def

return

repr__ (self):
'<Post

>>> class Category (Base):
_ _tablename_ = 'ca
id = Column (Integer
name = Column (Strin

def _ init__ (self,

Column (Integer,

o1 o
cIr> S

st'

, primary_key=True)
ng (80))

g(100))

ateTime)

ForeignKey ('category.id'))
ship('Category',
('"posts', lazy='dynamic'))

title,

tle

Y

None:
datetime.utcnow ()
pub_date
category

body, category, pub_date=None) :

self.title

tegory'
, primary_key=True)
g(50))

name) :

16

Chapter 5. Tutorial

"Smith",

"Smith",

12

12

pyexcel-io Documentation, Release 0.2.0

self.name = name

def _ _repr__ (self):

return '<Category >' % self.name
def _ str_ (self):
return self.__repr_ ()

Let’s clear the database and create previous table in the database:

>>> Base.metadata.create_all (engine)

Suppose we have these data:

>>> data = {

"Category": [
"id", "name"],
[1, "News"],
[2, "Sports"]

1,

"Post": [
"id", "title", "body", "pub_date", "category"],
[1, "Title A", "formal", datetime.datetime(2015,1,20,23,28,29), "News"],
[2, "Title B", "informal", datetime.datetime (2015,1,20,23,28,30), "Sports"]

Both table has gotten initialization functions:

>>> def category_init_func(row) :
c = Category(row['name'])
c.id = row['id']
return c

and particularly Post has a foreign key to Category, so we need to query Category out and assign it to Post instance

>>> def post_init_func(row) :

c = mysession.query (Category) .filter_by (name=row['category']).first ()
p = Post(row['title'], row['body']l, c, row['pub_date'])
return p

Here’s the code to update both:

>>> tables = {
"Category": [Category, datal['Category'][0], None, category_init_func],
"Post": [Post, data['Post'][0], None, post_init_func]

}
>>> from pyexcel_io._compact import OrderedDict
>>> importer = SQLTableImporter (mysession)
>>> adapterl = SQLTableImportAdapter (Category)
>>> adapterl.column_names = datal['Category'][0]
>>> adapterl.row_initializer = category_init_func
>>> importer.append (adapterl)
>>> adapter2 = SQLTableImportAdapter (Post)
>>> adapter2.column_names = datal['Post'][0]
>>> adapter2.row_initializer = post_init_func
>>> importer.append (adapter?)
>>> to_store = OrderedDict ()
>>> to_store.update ({adapterl.get_name(): datal['Category'][1l:]})
>>> to_store.update ({adapter2.get_name(): datal['Post'][1:]})
>>> save_data (importer, to_store, file_type=DB_SQL)

5.4. Working with sqglalchemy 17

pyexcel-io Documentation, Release 0.2.0

Let’s verify what do we have in the database:

>>> query_sets = mysession.query (Category) .all()

>>> results = from_query_sets(data['Category'][0], query_sets)

>>> import json

>>> json.dumps (list (results))

‘rr"id", "name"], [1, "News"], [2, "Sports"]]'

>>> query_sets = mysession.query (Post).all()

>>> results = from_query_sets (["id", "title", "body", "pub_date"], query_sets)

>>> json.dumps (list (results))

[rrid", "title", "body", "pub_date"], [1, "Title A", "formal", "2015-01-20T23:28:29"],

(2,

Skipping existing record

When you import data into a database that has data already, you can skip existing record if
pyexcel_io.PyexcelSQLSkipRowException israised. Example can be found here in test code.

Update existing record

When you import data into a database that has data already, you can update an existing record if you can query it from
the database and set the data yourself and most importantly return it. You can find an example in test skipping row

5.4.4 Read data from multiple tables

Let’s use previous data for reading and see if we could get them via get_data () :

>>> exporter = SQLTableExporter (mysession)

>>> adapter = SQLTableExportAdapter (Category)

>>> exporter.append (adapter)

>>> adapter = SQLTableExportAdapter (Post)

>>> exporter.append (adapter)

>>> data = get_data(exporter, file_type=DB_SQL)

>>> json.dumps (data)

'{"category": [["id", "name"], [1, "News"], [2, "Sports"]], "post": [["body", "category|

pid",

5.5 Working with django database

9999

This section shows the way to to write and read from django database. Becuase it is “heavy
here to show you. A mocked django model is used here to demonstate it:

to include a django site

>>> class FakeDjangoModel:
def = init_ (self):
self.objects = Objects()
self._meta = Metal()

def _ _call_(self, xxkeywords):
return keywords

Note: You can visit django-excel documentation if you would prefer a real django model to be used in tutorial.

18 Chapter 5. Tutorial

"Title B!

nign ,

llI

https://github.com/chfw/pyexcel-io/blob/master/tests/test_sql_book.py#L125
https://github.com/chfw/pyexcel-io/blob/master/tests/test_sql_book.py#L162
http://django-excel.readthedocs.org/en/latest/

pyexcel-io Documentation, Release 0.2.0

5.5.1 Write data to a django model

Let’s suppose we have a django model:

>>> from pyexcel_io import save_data

>>> from pyexcel io.constants import DB_DJANGO, DEFAULT_SHEET_NAME

>>> from pyexcel io.djangobook import DjangoModelImporter, DjangoModelExporter

>>> from pyexcel io.djangobook import DjangoModelImportAdapter, DjangoModelExportAdapter
>>> model = FakeDjangoModel ()

Suppose you have these data:

>>> data = [
("x», "y", "z"1,
[, 2, 31,
(4, 5, 6]

>>> importer = DjangoModelImporter ()

>>> adapter = DjangoModelImportAdapter (model)

>>> adapter.set_column_names (datal[0])

>>> importer.append (adapter)

>>> save_data (importer, {adapter.get_name(): data[l:]}, file_type=DB_DJANGO)
>>> import pprint

>>> pprint.pprint (model.objects.objs)

[{'x': 1, 'y': 2, 'z2': 3}, {'X': 4, 'Y': 5, '"Z': 6}]

5.5.2 Read data from a django model

Continue from previous example, you can read this back:

>>> from pyexcel_io import get_data

>>> exporter = DjangoModelExporter ()

>>> adapter = DjangoModelExportAdapter (model)

>>> exporter.append (adapter)

>>> data = get_data (exporter, file_type=DB_DJANGO)

>>> data

OrderedDict ([('SheetO', [['X', 'Y', 'Z'l, [1, 2, 31, [4, 5, 611)1)

5.5.3 Write data into multiple models

Suppose you have the following data to be stored in the database:

>>> data = {
"Sheet1": [['X', 'Y', 'Zz'], [1, 4, 71, [2, 5, 8], [3, 6, 911,
"Sheet2": [['A', 'B', 'C'l, [1, 4, 71, [2, 5, 8], [3, 6, 91]

And want to save them to two django models:

>>> modell = FakeDjangoModel ()
>>> model2 = FakeDjangoModel ()

In order to store a dictionary data structure, you need to do some transformation:

>>> importer = DjangoModelImporter ()
>>> adapterl = DjangoModelImportAdapter (modell)
>>> adapterl.set_column_names (data['Sheet1'][0])

5.5. Working with django database 19

pyexcel-io Documentation, Release 0.2.0

>>> adapter2 = DjangoModelImportAdapter (model?2)
>>> adapter2.set_column_names (data['Sheet2'][0])
>>> importer.append (adapterl)
>>> importer.append (adapter2)

>>> to_store = {
adapterl.get_name(): data['Sheetl1'][1:],
adapter2.get_name () : data['Sheet2'][1:]

o)

>>> save_data (importer, to_store, file_type=DB_DJANGO)

>>> pprint.pprint (modell.objects.objs)

[{'X': 1, 'y': 4, 'Z2': 7}, {'X': 2, '¥Y': 5, '2': 8}, {'X': 3, '¥Y': 6, 'Z': 9}]
>>> pprint.pprint (model2.objects.objs)

[{'A': 1, 'B': 4, 'C': 7}, {'A': 2, 'B': 5, 'C': 8}, {'A': 3, 'B': 6, 'C': 9}]

5.5.4 Read content from multiple tables

Here’s what you need to do:

>>> exporter = DjangoModelExporter ()

>>> adapterl = DjangoModelExportAdapter (modell)

>>> adapter2 = DjangoModelExportAdapter (model?2)

>>> exporter.append (adapterl)

>>> exporter.append (adapter2)

>>> data = get_data (exporter, file_type=DB_DJANGO)

>>> data

OrderedDict ([('Sheet1', [['X', 'Y', 'Z2'1l, [1, 4, 71, [2, 5, 8], [3, 6, 911), ('Sheet2',

5.6 Working with xls, xlsx, and ods formats

5.6.1 Work with physical file

Here’s what is needed:

>>> from pyexcel_io import save_data
>>> data = [[1,2,3]]
>>> save_data("test.xls", data)

And you can also get the data back:

>>> from pyexcel io import get_data
>>> data = get_data("test.xls")

>>> data['pyexcel_sheetl']

[[1.0, 2.0, 3.0]]

5.6.2 Work with memory file

Here is the sample code to work with memory file:

>>> from pyexcel io.base import get_io
>>> io = get_io("x1ls")

>>> data = [[1,2,31]

>>> save_data(io, data, "xls")

20 Chapter 5. Tutorial

[Lrar,

'B',

pyexcel-io Documentation, Release 0.2.0

The difference is that you have mention file type if you use pyexcel_io.save_data ()

And you can also get the data back:

>>> data = get_data(io, "xls")
>>> data['pyexcel_sheetl']
[[1.0, 2.0, 3.0]]

The same applies to pyexcel_io.get_data().

5.6.3 Other formats

As illustrated above, you can start to play with pyexcel-xlsx, pyexcel-ods and pyexcel-ods3 plugins.

5.6. Working with xlIs, xIsx, and ods formats 21

pyexcel-io Documentation, Release 0.2.0

22 Chapter 5. Tutorial

CHAPTER 6

API

Utility functions

23

pyexcel-io Documentation, Release 0.2.0

24 Chapter 6. API

CHAPTER 7

Indices and tables

¢ genindex
* modindex

e search

25

	Introduction
	Getting the source
	Installation
	Special note
	Tutorial
	Working with CSV format
	Saving multiple sheets as CSV format
	File formats: .csvz and .tsvz
	Working with sqlalchemy
	Working with django database
	Working with xls, xlsx, and ods formats

	API
	Indices and tables

